Etudes par Diffraction Neutronique et RMN de ZnMn₃C et GaMn₃C_{0.935}

D. FRUCHART ET E. F. BERTAUT

Laboratoire des Rayons X, C.N.R.S., B.P. No. 166—38042—Grenoble—Cedex et Laboratoire de Diffraction Neutronique, C.E.N.G., B.P. No. 85—38041—Grenoble—Cedex

B. LE CLERC, LE DANG KHOÏ, ET P. VEILLET

Institut d'Electronique Fondamentale Bât. 220, Faculté des Sciences, 91400-Orsay

G. LORTHIOIR, MME E. FRUCHART, ET R. FRUCHART Centre d'Etudes de Chimie Metallurgique 15, rue G. Urbain, 94400–Vitry/Seine

Received February 21, 1973

Above a temperature Θ_T the perovskite type compounds ZnMn₃C and GaMn₃C_{0.935} are ferromagnetic as GaMn₃C studied previously. Below Θ_T the magnetic structures of ZnMn₃C and GaMn₃C_{0.935} are tetragonal noncollinear, with a ferromagnetic component along the tetragonal Oz axis and an antiferromagnetic component in the Oxy plane while GaMn₃C is a collinear antiferromagnet below Θ_T . The two compounds ZnMn₃C and GaMn₃C_{0.935} show with respect to GaMn₃C the common feature of a reduction of the number of electrons, but obtained in substantially different ways, by the substitution Ga \rightarrow Zn in ZnMn₃C, by the production of vacancies in GaMn₃C_{0.935}. By NMR we have observed resonances on ⁶⁹Ga and ⁷¹Ga which can be attributed to neighborhoods of zero, one and two C-vacancies in GaMn₃C_{0.935} resonances on ⁶⁷Zn in ZnMn₃C and resonances on ⁵⁵Mn.

There is a good agreement between the symmetry changes observed by neutron diffraction and NMR, between the thermal variation of the ferromagnetic components, determined by the same techniques and by magnetic measurements.

Au-dessus d'une température Θ_T les composés pérovskites $ZnMn_3C$ et $GaMn_3C_{0.935}$ sont ferromagnétiques comme $GaMn_3C$ étudié antérieurement. Au-dessous de Θ_T les structures magnétiques de $ZnMn_3C$ et de $GaMn_3C_{0.935}$ sont quadratiques non colinéaires ayant une composante ferromagnétique selon l'axe quaternaire Oz et une composante antiferromagnétique dans le plan Oxy. Par rapport à $GaMn_3C$ qui est un antiferromagnétique colinéaire au-dessous de Θ_T les deux composés $ZnMn_3C$ et $GaMn_3C_{0.935}$ ont en commun une réduction du nombre d'électrons, obtenue cependant de manière très différente, soit par la substitution $Ga \rightarrow Zn$ dans $ZnMn_3C$, soit par la création de lacunes C dans $GaMn_3C_{0.935}$. La RMN a permis d'observer des résonances sur ⁶⁹Ga et ⁷¹Ga attribuables aux voisinages à zéro, une et deux lacunes dans $GaMn_3C_{0.935}$, les résonances sur ⁶⁷Zn dans $ZnMn_3C$, ainsi que les résonances de ⁵⁵Mn et d'en déduire les champs hyperfins directs et transférés ainsi que les gradients de champ électrique.

Il y a un bon accord entre les changements de symétrie observés par RMN et par diffraction neutronique magnétique et entre les composantes ferromagnétiques, déterminées par diffraction neutronique, par mesures magnétiques et déduites des champs hyperfins en RMN ainsi que de leur variation thermique.

Introduction

Les pérowskites métalliques du manganèse, ferromagnétiques, ZnMn₃C ($\theta_c = 375$ K) et GaMn₃C_{0.935} ($\theta_c = 263$ K) se singularisent toutes deux aux basses températures par une transition θ_T située respectivement à 233 K (1-3) et 147 K (4, 5): celle-ci se caractérise dans la

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain variation thermique de l'aimantation par un changement de pente. Au dessous de $\theta_{\rm T}$ la saturation de l'aimantation n'est plus obtenue (5). GaMn₃C_{0.935} présente une structure cubique à toute température (4, 5), par contre ZnMn₃C subit une déformation dont l'amplitude, nulle à la transition, augmente régulièrement au refroidissement (c/a = 0.9932 à 4.2 K). La structure magnétique de ZnMn₃C déterminée précédemment (2) n'est pas confirmée, nous proposons une nouvelle structure que nous comparons à celle de GaMn₃C_{0.935}. Les résultats de la diffraction neutronique sont confrontés avec ceux de la RMN. La résonance de ⁵⁵Mn, ⁶⁷Zn, ⁶⁹Ga, ⁷¹Ga a été observée dans des échantillons de poudre par la méthode des échos de spin.

Nota: Nous distinguerons les sites métalliques I et II, le premier de symétrie cubique est occupé par le zinc ou le gallium, le second de symétrie ponctuelle D_{4h} par les atomes de manganèse conformément à la formule Ga¹Mn¹¹₃C. La déformation quadratique entraîne la subdivision des Mn¹¹ en Mn¹¹_{1,2} et Mn¹¹₃.

Etude par Diffraction Neutronique

Les diffractogrammes ont été enregistrés à diverses températures ($\lambda = 1.11$ Å). ZnMn₃C a été analysé à 4.2 K, 293 K (Fig. 1a) et 413 K. GaMn₃C_{0.935} a été étudié à 77 K, 180 K (Fig. 1b) et 293 K.

Le Tableau I résume les intensités nucléaires observées et calculées dans le but de contrôler la teneur en carbone. Rappelons l'importance de la composition en carbone puisque le composé stoechiométrique GaMn₃C présente une transition du 1° ordre AF \rightleftharpoons Ferro qui a fait l'objet d'une étude antérieure par diffraction neutronique (6). Préparé en vue de la composition GaMn₃-C_{0.95}, le composé effectivement obtenu répond à la formule GaMn₃C_{0.935±0.015} (résidu cristallographique R = 3.6%). La stoechiométrie de

TABLEAU I

Intensités Nucléaires Observées^a et Calculées

	Mn ₃	ZnC	Mn ₃ GaC _{0.935}		
h k l	I _{obs} ^a	Icale	I _{obs} "	Icale	
100	0.448	0.504	1.2	1.32	
110	31.51	31	34.37	34.27	
111	10.33	10.56	8.3	7.53	
200	0.16	0.17	0.35	0.37	
210	1.8	2.02	4.55	5.3	

" Intensités observées normalisées.

FIG. 1. (a) Diagrammes de diffraction neutronique de ZnMn₃C; I A 4.2 K; II A 413 K dans l'état paramagnétique. (b) Diagrammes de diffraction neutronique de GaMn₃C_{0.935}; I A 77 K; II A 203 K dans l'état paramagnétique. Le sens des flèches des échelles d'ordonnée signifie pour \Im : courbe I et pour \Im : courbe II.

 $ZnMn_3C$ est vérifiée à une précision de l'ordre de 1% en ce qui concerne C (R = 1.5%).

(a) Etude de la Structure Entre θ_T et θ_C

Les deux composés sont ferromagnétiques. Le moment du manganèse déduit des clichés de diffraction neutronique est de:

 $1.35\mu_{\rm B}/{\rm Mn}$ dans ZnMn₃C à 293 K

 $1.30\mu_{\rm B}/{\rm Mn}$ dans GaMn₃C_{0.935} à 180 K.

Valeurs en accord avec les mesures d'aimantation (1 à 4) Tableau IV.

(b) Etude Au Dessous de la Transition Magnétique θ_T

Les spectres de diffraction neutronique de ZnMn₃C pris à 4.2 K et de GaMn₃C_{0.935} obtenu à 77 K conduisent à la même indexation. Nous décrivons l'arrangement des spins dans une maille quadratique multiple de la maille chimique et de paramètres $a\sqrt{2}$, $a\sqrt{2}$, 2c (ou 2a). La maille est centrée, les atomes magnétiques sont répartis sur les sites 4c et 8f du groupe I 4 | mmm. Dans la représentation Γ_{2g} de ce groupe, la méthode macroscopique (7) autorise le couplage d'une composante z en site 4c avec les composantes x y z en site 8f. Le Tableau II précise les vecteurs de base attachés à la représentation Γ_{2q} . La Fig. 2 décrit la structure magnétique proposée. Les intensités magnétiques observées et calculées sont rassemblées dans le Tableau III. Nous voyons que les spins des Mn_3^{II} sont orientés suivant l'axe c, tandis que les spins des $Mn_{1,2}^{II}$ font un angle ϕ par rapport à l'axe c. L'angle ϕ déterminé à 4.2 K vaut 65°C environ dans ZnMn₃C. Nous mesurons un angle $\phi \simeq 20^\circ$ à 77 K dans GaMn₃C_{0.935}.

(c) Etude sous Champ Magnétique

 $ZnMn_3C$ présente une certaine dureté en phase quadratique (3). Le spectre de neutrons effectué

TABLEAU II

Vecteurs de Base de la Représentation Γ_{2g} des Sites 4c et 8F du Groupe $I4/mm^a$

4c	8 <i>f</i>
$(S_1 + S_2)_z$	$ \begin{pmatrix} S_{1x} - S_{2x} - S_{3x} - S_{4x} \\ + S_{1y} + S_{2y} - S_{3y} - S_{4y} \end{pmatrix} \\ (S_1 + S_2 + S_3 + S_4)_z $

^e La translation I réduit de moitié le nombre de spins.

FIG. 2. Structure magnétique de ZnMn₃C (seuls les atomes de manganèse sont représentés) ϕ vaut 65 degrés à 4.2 K. Pour Mn₃GaC_{0.95} et à 77 K l'angle ϕ vaut environ 20 degrés.

sur une poudre (liée par une colle à l'acétone) n'est pas sensiblement modifié dans un champ de l'ordre de l kOe, par contre de profondes altérations interviennent dans des champs supérieurs: on observe un alignement rapide de la composante ferromagnétique (H < 6 kOe). L'arrangement antiferromagnétique décroît plus

TABLEAU III

INTENSITÉS MAGNÉTIQUES CALCULÉES ET Observées^a

	Mn ₃ ZnC		Mn3GaC0.935		
hkl	Icale	Iobs	Icalc	I _{obs}	
101	5.673	5.35	0.236	0.237	
110	2.311	2.75	1.767	1.867	
$\left. \begin{array}{c} 2 \ 1 \ 1 \\ 1 \ 0 \ 3 \end{array} \right\}$	22.27	22.4	0.933	0.923	
202	9.34	8.35 ^b	_		
220	5.25	5.65	3.70	3.73	
$\left. \begin{array}{c} 3 & 0 & 1 \\ 2 & 1 & 3 \end{array} \right\}$	9.453	9.04	0.396	0.411	
$310 \\ 222$	1.865	1.82	1.373	1.2	
114)		,		,	
	$\frac{1}{R=5\%}$		R = 4%		

^a L'indexation est celle de la maille magnétique.

^b Evaluation difficile.

lentement et semble disparaître pour H = 17.5kOe tandis qu'il apparait de très larges "bosses magnétiques" dans le spectre aux angles faibles, que nous attribuons aux effets du champ sur une large distribution d'orientation offerte par les grains de poudre de l'échantillon et que nous réservons à une étude ultérieure. L'étude sous champ nécessiterait l'utilisation d'un monocristal.

Etude par R.M.N.

Etude de Zn^IMn₃^{II}C

(a) Identification des Raies Nucléaires dans le Domaine Ferromagnétique. ZnMn₃C est alors Cubique

Spectre de résonance du Mn^{II}. Le signal d'écho d'une raie anisotrope est généralement plus facile à détecter dans les domaines plutôt que dans les parois de Bloch (8-10). Compte tenu de la symétrie D_{4h} du site II, le spectre de résonance complexe observé (Fig. 3) a été attribué au Mn^{II} en raison du champ hyperfin anisotrope et du gradient de champ électrique que l'on peut attendre de la symétrie axiale du site. L'observation de deux spectres de résonance avec des poids statistiques 1:2 montre que la symétrie axiale est imposée par l'axe C-Mn-C et que les spins sont orientés suivant la direction [100] ou équivalente. On déduit du spectre à 260 K une constante de couplage quadrupolaire $e^2 q Q/h = 80$ MHz, la partie isotrope du champ Hc = -122 kOe et la partie anisotrope Hd = -28 kOe (les indices c et d désignent respectivement coeur et dipolaire, l'action du champ extérieur a montré qu'ils étaient négatifs). Le champ dipolaire sommé sur une sphère de Lorentz de 30 mailles atteint 1.6 kOe, il en résulte que le champ anisotrope et le gradient de champ électrique proviennent de la symétrie axiale de la répartition des électrons et du manganèse.

FIG. 3. Spectre de résonance du manganèse dans $ZnMn_3C$.

Spectre de résonance du Zn^{I} . La raie de résonance observée à 41 MHz à la température ambiante correspond au zinc situé dans un entourage de symétrie cubique. Son champ transféré est négatif.

Raie supplémentaire. Une raie fine observée à l'ambiante à 86 MHz a finalement été attribuée à une faible proportion de Mn^{I} substitué au zinc. La formule du composé serait proche de la composition $(Zn_{0.992}^{I} Mn_{0.008}^{I}) Mn_{3}^{II}C$. L'analyse d'un échantillon plus substitué $(Mn_{0.10}^{I}Zn_{0.90}^{I})$ - $Mn_{3}^{II}C$ a levé toute ambiguīté. Contrairement au Mn^{II} , la fréquence de résonance du Mn^{I} croît sous l'action d'un champ extérieur.

(b) Etude en Fonction de la Température

Les raies de résonance identifiées précédemment évoluent en fonction de la température selon la Fig. 4. Le champ transféré aux noyaux de zinc vaut -213 kOe à 4.2 K. Il ne varie pratiquement pas entre 4.2 K et $\theta_T = 233$ K, mais au delà il décroît normalement dans le domaine ferromagnétique. La fréquence de résonance de Mn^I varie de manière semblable à celle du zinc au dessous de θ_T . Au dessus de θ_T la faible variation thermique de la fréquence de résonance de Mn^I montre que le champ d'échange sur Mn_I est plus

FIG. 4. Evolution thermique des fréquences de résonance de $ZnMn_3C$.

grand que celui des Mn_{II} non voisins de Mn_{I} . Il en résulte que le point de Curie augmente avec la proportion de Mn^{I} dans $(Mn_{x}^{I}Zn_{1-x}^{I})Mn_{3}^{II}C(1)$. L'évolution du spectre caractéristique de Mn^{II} est beaucoup plus complexe comme le laissent prévoir d'une part les résultats de la diffraction neutronique et d'autre part l'effet de la déformation quadratique. Le caractère du 2° ordre de la transition θ_{T} se confirme par la continuité des diverses fréquences de résonance au passage de la transformation.

Etude de GaMn₃C_{0.935}

Les spectres de RMN de $GaMn_3C_{0.935}$ et ZnMn₃C diffèrent sur deux points qui ne remettent pas en cause l'analogie des structures magnétiques établie par l'étude aux neutrons:

(a) Effets des Lacunes de Carbone

En raison du caractère lacunaire du composé GaMn₃C_{0.935}, plusieurs sites de Ga et Mn non équivalents ont été détectés (Fig. 5). Si x est le % de lacunes de carbone, la probabilité de trouver n lacunes sur les 8 atomes de carbone premiers voisins est

$$P(n) = \binom{8}{n} x^n (1-x)^{8-n}$$

Les fréquences de résonance de 69 Ga observée vers 134, 137, 153 MHz à 188 K sont attribuées aux trois distributions P(0), P(1), et P(2) respectivement dans la proportion

$$\frac{P(2)}{P(0)+P(1)}=0.1\pm0.02.$$

FIG. 5. Spectres de résonance de GaMn₃C_{0.935}.

Le pourcentage de lacune que l'on déduit $7 \pm 1\%$ est en bon accord avec la détermination aux neutrons. A 4.2 K, le champ transféré sur le gallium est de -161 kOe (compte tenu des mesures sous champ).

(b) Effet de la Transition sur la Structure Fine du Manganèse

Au dessus du point de transition θ_T . La structure fine du manganèse disparait brusquement au dessus de θ_T (Fig. 5 et 6). Nous avons déjà interprété précédemment l'absence de structure fine dans GaMn₃C (11) par l'orientation des spins dans la direction [111]: le passage à la symétrie ternaire fait disparaître la décomposition du spectre du manganèse liée à l'orientation des spins

suivant l'axe d'ordre 4 d'une part, $(Hd \perp Hc)$, d'autre part la décomposition quadrupolaire est alors fortement réduite (elle serait nulle si Hd était nul).

Nota: Nous signalons une erreur dans la publication (11), les spectres en R.M.N. de GaMn₃C et GaMn₃C_{0.95} ont été déterminés à 215 K et non à 196 K.

Au dessous du point de transition θ_T . La structure non colinéaire présente une composante ferromagnétique orientée suivant l'axe [001]:

FIG. 6. Evolution thermique des fréquences de résonance de $GaMn_3C_{0.935}$.

nous observons par conséquent la structure fine du manganèse. Malheureusement l'interférence des spectres des différents types de manganèse résultant de la présence de lacunes en carbone rend difficile l'analyse. Cependant la structure fine attribuable au $Mn_{1,2}$ est résolue sur le spectre à T = 140 K (Fig. 5).

Détermination des caractéristiques Hc, Hd, $e^2 q Q/h$. L'absence de discontinuité sur la fréquence de résonance du gallium confirme le caractère du 2° ordre de la transformation, ce qui permet de penser que le changement brusque des spectres de résonance du manganèse à la transition résulte uniquement de la rotation des spins. Dans ce cas, le champ interne est pratiquement égal à $(H_c^2 + H_d^2/2)^{1/2}$ au dessus de la transition; il vaut (Hc - Hd/2) au dessous de la transition. Les valeurs déduites du spectre à 140 K sont

$$e^2 qQ/h \simeq 75$$
 MHz; $Hc \simeq -111.5$ KOe;
 $Hd = -26$ kOe.

Discussion

L'interaction quadrupolaire de $Mn_{1,2}$ ne s'annule pas dans $ZnMn_3C$ à une température

intermédiaire entre 233 K et 4.2 K bien que l'angle ϕ de déviation des spins croisse par rapport à la direction [001], depuis 0 à la transition $\theta_{\rm T}$ pour atteindre environ 65 degrés à 4.2 K. Cette situation semble être analogue à celle observée et interprétée par Hihara et coll. (13) au cours de l'étude par R.M.N. de la structure non colinéaire de β_1 -MnZn. En fait le gradient de champ électrique selon la ligne de jonction C-C (parallèle à [100] ou [010]) reste toujours perpendiculaire aux spîns $Mn_{1,2}$ se trouvant dans le plan médiateur de C-C de sorte que le facteur angulaire restant constant, l'interaction quadrupolaire des spins $Mn_{1,2}$ reste elle aussi pratiquement constante en fonction de la température. sa valeur étant deux fois plus faible que celle de Mn₁.

Le champ transféré aux noyaux de zinc reste sensiblement constant entre 4.2 K et 233 K. Il est proportionnel à la composante ferromagnétique des moments du manganèse, qui ne varie pratiquement pas comme l'ont montré les résultats de la diffraction neutronique et les mesures d'aimantation (12) (Tableau IV).

Les champs hyperfins sur le manganèse Mn^I (substitué en petite quantité au zinc) et sur le

	N	Moments Magnétiques par M	langanèse		
ZnMn ₃ C	Résultats de diffraction neutronique			Mesures	
	site 4c	site 8f		- u annantation (12)	
Structure non colinéaire (4.2 K)	ructure non $1.60 \mu_B$ composante ferro: $1.15 \mu_B$ linéairecomposante AF: $2.45 \mu_B$.2 K)résultante: $2.70 \mu_B$		résultante ferromagnétique 1.30 μ _B	$(H = 26\ 600\ Oe)$ à 20.4 K 1.16 μ_{B}	
Structure ferromagnétique (293 K)		1.35 μ _B		à 240 K 1.28 μ _B	
		Résultats de diffraction neu	Mesures		
$GaMn_3C_{0.935} \qquad \text{site } 4c$		site 8f		d'almantation (5)	
Structure non colinéaire (77 K)	1.45 μ _Β	composante ferro: $0.34 \mu_B$ composante AF: $0.92 \mu_B$ résultante: $0.98 \mu_B$	résultante ferromagnétique 1.10 μ _B	$(H = 26\ 600\ Oe)$ à 20.4 K 1.19 μ_B	
Structure		1.30 μ _B	à 150 K		

TABLEAU IV

 Mn^{II} sont de signes contraires: cette situation que l'on trouve dans la pérowskite ferrimagnéttique Mn_4N permet de penser que l'interaction d'échange entre Mn^I et Mn^{II} est également négative dans la solution solide $(Zn_{1-x}Mn_x^I)$ - $Mn_3^{II}C$. Abe et coll. (14) ont déduit d'une étue end RMN de Mn_4N les coefficients Aij de la matrice reliant les champs hyperfins Hi aux moments

deux manières très différentes qui ont pour point commun de réduire le nombre d'électrons sur GaMn₃C, soit par la création de lacunes de carbone, soit par la diminuation du nombre d'électrons sur le métal (Ga \rightarrow Zinc).

Nous pouvons également comparer les caractéristiques nucléaires très différentes du Mn^{II} de ZnMde Mn^{II}₃C et n^IMn^{II}₃N (Mn₄N) (14)

	$e^2 q Q/h$	Нс	Hd	$M_{\mu_{\mathbf{B}}}$	Hd/M	Références
 Mn₄N	-29.0*	+25.1	+7.0	-0.89**	-7.86	*(14)
77 K	MHz	kOe	kOe	μ_{B}		**(15)
ZnMn₃C	+80	-122	-28	+1.35	20.7	(ce travail)
260 K	MHz	kOe	kOe	μ_{B}		

portés par les atomes de manganèse Mj. En particulier

$$H_{\rm I} = -50 \ M_{\rm I} - 76 \ M_{\rm II} \ (H_{\rm I} \ {\rm en \ kOe} - M_{\rm I} \ {\rm en \ } \mu_{\rm B})$$

Nous pouvons appliquer cette relation en négligeant l'effet de la faible variation de paramètre (ZnMn₃C, a = 3.923 Å; Mn₄N, a = 3.871 Å).

Nous obtenons à partir des valeurs déterminées à 240 K— $(H_I = 88 \text{ kOe et } M_{II} \simeq 1.3 \mu_B)$ —un moment sur Mn^I = $-3.7_4 \mu_B$.

Cette valeur est en concordance avec le moment de Mn^I dans Mn₄N: (Mn_{II} = 0.89 μ_B)—Mn_I = -3.85 μ_B à 77 K et -3.53 μ_B à 300 K (15). Il semble donc bien que le champ transféré au site cubique provienne essentiellement des atomes magnétiques premiers voisins.

Le champ transféré au site cubique semble bien provenir essentiellement des atomes magnétiques premiers voisins (12 Mn^{11}) puisqu'il paraît indépendant de la présence du réseau Mn^{1} (cas de $Mn_{4}N$) ou non (cas de ZnMn₃C) sur le site cubique.

Le gradient de champ électrique et le champ dipolaire par magnetons de Bohr nous renseignent sur la symétrie de la répartition des électrons. Sur ce point qui a pu être analysé seulement dans l'état ferromagnétique, il est intéressant de noter la concordance étroite des deux composés. L'isotypie des structures magnétiques non colinéaires n'est donc pas surprenante. Remarquons que ces structures sont induites de (L'inversion des signes est en relation avec le ferrimagnétisme selon que Mn^I ou Mn^{II} sert de référence).

Bibliographie

- *I.* R. G. BUTTERS ET H. P. MYERS, *Phil, Mag.* 7, 46–132 (1955a).
- 2. B. N. BROCKHOUSE ET H. P. MYERS, Can. J. Phys. 35, 313 (1957).
- R. MADAR, L. GILLES, A. ROUAULT, J. P. BOUCHAUD, MME E. FRUCHART, G. LORTHIOIR, ET R. FRUCHART, C. R. Acad. Sci. *Paris* 264, 308 (1967).
- 4. J. P. BOUCHAUD ET R. FRUCHART, C. R. Acad. Sci., Paris 261, 458 (1965).
- 5. J. P. BOUCHAUD, Ann. Chim. 3, 81 (1968).
- D. FRUCHART, E. F. BERTAUT, F. SAYETAT, M. NASR EDDINE, R. FRUCHART, ET J. P. SÉNATEUR, Solid State Comm. 8, 91 (1970).
- 7. E. F. BERTAUT, Acta Cryst. A24, 1-217 (1968).
- 8. H. NAGAI, T. HIHARA, ET E. HIRAHARA, J. Phys. Soc. Japan 29, 622 (1970).
- 9. LE DANG KHOÏ, J. Phys. 32, C1, 1146 (1971).
- 10. R. L. STREEVER ET J. P. CAPLAN, Phys. Lett. 35A, 8 (1971).
- LE DANG KHOĬ, MME E. FRUCHART, ET R. FRUCHART, Solid State Comm. 8, 49 (1970).
- 12. G. LORTHIOIR, résultats non publiés.
- T. HIHARA, M. KASAYA, ET Y. KOÏ, J. Phys. Soc. Japan 27, 329 (1969).
- 14. H. Abe, M. Matsuura, A. Hirai, J. Haruna, M. Mekata, J. Phys. Soc. Japan 22, 558 (1967).
- 15. W. J. TAKEI, R. R. HEIKES, G. SHIRANE, *Phys. Rev.* 125, 1893 (1962).